We are proud to share our innovative technology has been thoroughly validated, used & very well described in over 250+ scientific publications. The 25+ years of TIM Technology are the building blocks for our service offerings today, with comprehensive expertise across different applications. Review examples of our work below:

1. Development, validation and application of the TIM technology

Aguirre, M. (2016). Fermentation of indigestible carbohydrates by the gut microbiota. PhD Thesis Maastricht University, Netherlands., Netherlands. ISBN: 978 94 6295 349 9

Arkbåge, K. (2003). Vitamin B12, folate and folate binding proteins in dairy products. Analysis, process retention and bioavailability. PhD Thesis Swedish University of Agricultural Sciences. Uppsala, Sweden. SLV Service/Repro. ISBN: 91-567-6470-6.

Galan, I. (2012). Technologycal viability and bioaccesibility of folic acid added to conventional and ready to eat meat products manufactured using E-beam irradiation treatment. PhD Thesis Complutense University. Madrid, Spain.

Krul, C.A.M. (2001, November 8). Mutagenic and antimutagenic activity of food compounds: application of a dynamic in vitro gastrointestinal model. PhD Thesis Utrecht University. Febodruk BV, Enschede, The Netherlands. ISBN: 90-393-2857-9.

Larsson, K. (2016). Oxidation of fish lipids during gastrointestinal in vitro digestion. PhD Thesis Chalmers University of technology. Gothenburg, Sweden. Chalmers Reproservice, Sweden. ISBN: 978-91-7597-386-9

Mateo Anson, N. (2010, May 28). Bioactive compounds in whole grain wheat. PhD Thesis, Maastricht University. Riddeprint b.v. The Netherlands. ISBN: 978-90-5335-275-5.

Minekus, M. (1998, May 28). Development and validation of a dynamic model of the gastrointestinal tract. PhD Thesis, Utrecht University. Elinkwijk b.v., Utrecht, Netherlands. ISBN: 90-393-1666-x.

Smeets-Peeters, M.J.E. (2000, September 8). Feeding FIDO: Development, validation and application of a dynamic in vitro model of the gastrointestinal tract of the dog. PhD Thesis, Wageningen University. Universal Press, Veenendaal, The Netherlands. ISBN: 90-5808-259-8.

Van Nuenen, M. (2005, November 18). Composition and activity of gut microbiota in inflammatory bowel disease. PhD Thesis, Erasmus University Rotterdam. Ponsen & Looijen b.v., Wageningen, The Netherlands. ISBN: 90-6464-234-6.

Verwei, M. (2004, September 15). Bioavailability of folate from fortified milk products. PhD Thesis Wageningen University. The Netherlands  ISBN: 90-8504-080-9.

2. General publications and technical aspects (incl. reviews)

Abrahamse, E., Minekus, M., van Aken, G.A., van de Heijning, B., Knol, J., Bartke, N., Oozeer, R., van der Beek, E.M. and  Ludwig, T. (2012). Development of the digestive system –  Experimental challenges and approaches of infant lipid digestion. Food Digestion 3 (1-3): 63-77.

Aguirre, M., Venema, K. (2017). Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Beneficial Microbes 8 (1): 31-53.

Alminger, M., Aura,A.-M., Bohn, T., Dufour, C., El, S.N., Gomes, A., Karakaya, S., Martinez-Cuesta, M.C., McDougall, G.J., Requena, T., santos, C.N. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compreh. Rev. Food Sci. Food Safety 13: 413-436.

Bellmann, S., Lelieveld, J., Gorissen, T., Minekus, M., Havenaar, R. (2016). Development of an advanced in vitro model and its evaluation versus human gastric physiology. Food Res. Internat. 88: 191-198.

Culen, M., Rezacova, A., Jampilek, J., Dohnal, J. (2013).Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small Intestine. J. Pharmaceutical Sci. 102 (9): 2995-3017. doi: 10.1002/jps.23494.

De Jong, L. (2005). Assessing Bioavailability. A new integrated methodology that predict long-term effects of foods in only a short time. World Food Ingredients Oct./Nov. pp  110-112.

Dupont, D., Alric, M., Blanquet-Diot, S., Bornhorst, G., Cueva, C., Deglaire, A., Denis, S., Ferrua, M., Havenaar, R., Lelieveld, J., Mackie, A.R., Marzorati, M., Menard, O., Minekus, M., Miralles, B., Recio, I., Van den Abbeele, P. (2018). Can dynamic in vitro digestion systems mimic the physiological reality? Crit. Rev. Food Sci. Nutr. Jan 13: 1-17. doi: 10.1080/10408398.2017.1421900.

Freidig, A. and Verwei, M. (2004). Integration of in vitro data in kinetic models for pharmaceuticals and nutrients. Netherlands Centre Altern. Animal Use Newsletter 16: 1-3.

Guerra, A., Etienne-Mesmin, L., Livrelli, V., Denis, S., Blanquet-Diot, S., Alric, M. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol. 30 (11): 591-600.

Havenaar, R., Veenstra, J., Minekus, M., Marteau, P. (1993). Unieke methode voor bestudering fysiologische aspecten van voeding. Voeding 54 (6): 7-11.

Havenaar, R. and Minekus, M. (1996). Simulated assimilation. Dairy Industries International 61 (9): 17 23.

Havenaar, R., Minekus, M. and Speckmann, A. (1995). Efficacy of Natuphos® phytase in a dynamic computer-controlled model of the gastro-intestinal tract. Proceedings European Symposium on Feed Enzymes, Noordwijkerhout, Netherlands. pp 211-212.

Kostewicz ES, Abrahamsson B, Brewster M, Brouwers, J., Butler, J., Carlert, S., Dickinson, P.A., Dressman, J., Holm, R., Klein, S., Mann, J., McAllister, M., Minekus, M., Muenster, U., Müllertz, A., Verwei, M., Vertzoni, M., Weitschies, W., Augustijns, P. (2014). In vitro models for the prediction of in vivo performance of oral dosage forms. Eur. J. Pharm. Sci. 57 (1): 324-366.

Lex, T. R., Rodriguez, J. D., Zhang, L., Jiang, W., & Gao, Z. (2022). Development of In Vitro Dissolution Testing Methods to Simulate Fed Conditions for Immediate Release Solid Oral Dosage Forms. The AAPS Journal, 24(2), 1-18.

Li, Z., He, X. (2015). Physiologically based in vitro models to predict the oral dissolution and absorption of a solid drug delivery system. Curr. Drug Metabol. 16: 777-806.

Lvova, L., Denis, S., Barra, A., Mielle, P., Salles, C., Vergoignan, C., Di Natale, C., Paolesse, R., Temple-Boyer, P. and Feron, G. (2012). Salt release monitoring with specific sensors in ‘in vitro’ oral and digestive environments from soft cheeses. Talanta 97: 171-180.

Marze, S. (2017). Bioavailability of nutrients and micronutrients: Advances in modeling and in vitro approaches. Annu. Rev. Sci. Techn. 8: 35-55. dio: 10.1146/annurev-food-030216-030055.

Minekus, M. and Havenaar, R. (1998). Reactor system. European Patent No. 0642382. European Patent Bulletin 98/07, Art. 97(4) and (5) EPC, dated 11.02.98.

Minekus, M. and Havenaar, R. (1996). In vitro model of an in vivo digestive tract. United States Patent; nr. 5,525,305, dated June 11, 1996.

Minekus, M., Marteau, P., Havenaar, R., Huis in ‘t Veld, J.H.J. (1995). A multi compartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to Laboratory Animals (ATLA) 23: 197-209.

Minekus, M., Smeets-Peeters, M.J.E., Bernalier, A., Marol-Bonnin, S., Havenaar, R., Marteau, P., Alric, M., Fonty, G., and Huis in ‘t Veld, J.H.J. (1999). A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microb. Biotechn. 53: 108-114.

Nguyen, T.T.P., Bhandari, B., Cichero, J., Prakash, S. (2015). A comprehensive review on in vitro digestion of infant formula. Food Res. Internat.

Sensoy, I. (2021). A review on the food digestion in the digestive tract and the used in vitro models. Current research in food science.

Smeets-Peeters, M.J.E., Watson, T., Minekus, M., Havenaar, R. (1998). A review of the physiology of the canine digestive tract related to the development of in vitro systems. Nutrition Research Reviews 11: 45-69.

Smeets-Peeters, M.J.E., Minekus, M., Havenaar, R., Schaafsma, G., Verstegen, M.W.A. (1999). Description of a dynamic in vitro model of the dog gastrointestinal tract and an evaluation of various transit times for protein and calcium. ATLA 27: 935-949.

Ting, Y., Zhao, Q., Xia, C., Huang, Q. (2015). Using in vitro and in vivo models to evaluate the oral bioavailability of neutraceuticals. J. Agr. Food Chem. 63: 1332-1338.

Van der Veken, M., Brouwers, J., Budts, V., Lauwerys, L., Pathak, S. M., Batchelor, H., & Augustijns, P. (2022). Practical and operational considerations related to paediatric oral drug formulation: an industry survey. International journal of pharmaceutics, 121670.

Venema K. (2014). In vitro assessment of the bioactivity of food oligosaccharides. In: Food Oligosaccharides: Production, Analysis and Bioactivity. Eds.: F.J. Moreno & M. Luz Sanz. John Wiley & Sons, Ltd.

Venema, K., Havenaar, R., Minekus, M. (2009). Improving in vitro simulation of the stomach and intestines. In: Designing Functional Foods and Controlling Food Structure Breakdown and Nutrition Absorption, Elsevier. pp 314-339.

Verhoeckx, K. (2015). The impact of food bioactives on health: in vitro and ex-vivo models. Ed. Verhoeckx, K., Cotter, P., Lopez-Exposito, I. et al. Springer Open.

Westerhout, J., van de Steeg, E., Grossouw, D., Zeijdner, E.E., Krul, C.A.M., Verwei, M., Wortelboer, H.M. (2014). A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur. J. Pharmac. Sci. 63: 167–177.

Williams, C.F., Walton, G.E., Jiang, L., Plummer, S., Garaiova, I., Gibson, G.R. (2015). Comparative analysis of intestinal tract models. Ann. Rev. Food Sci. Technol. 6: 329-350.

Yoo, J.Y., Chen, X.D. (2006). GIT Physicochemical modeling – A critical review. Internat. J. Food Engineering, 2 (4), article 4.

Zhu Y. (2011) Response to the article ‘‘In vitro human digestion models for food application’’. Food Chemistry, 128: 820-821.

3. Pharmaceutical studies

Barker, R., Abrahamsson, B., Kruusmägi, M. (2014). Application and validation of an advanced gastro-intestinal in vitro model for evaluation of drug product performance in pharmaceutical development.  J. Pharm. Sci. 103 (11): 3704-3712. doi: 10.1002/jps.24177.

Blanquet,S.; Garrait,G.; Beyssac,E.; Perrier,C.; Denis,S.; Hebrard,G.; Alric,M. (2005). Effects of cryoprotectants on the viability and activity of freeze dried recombinant yeasts as novel oral drug delivery systems assessed by an artificial digestive system. Eur. J. Pharmaceutics and Biopharmaceutics, 61: 32-39.

Blanquet,S., Antonelli, R., Laforet, L., Denis, S., Marol-Bonnin, S. and Alric, M. (2004). Living recombinant Saccharomyces cerevisiae secreting proteins or peptides as a new drug delivery system in the gut. J. Biotechn. 110: 37-49.

Blanquet, S., Zeijdner, E., Beyssac, E., Meunier, J-P., Denis, S., Havenaar, R. and Alric, M. (2004). A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharmaceutical Research. 21 (4): 585-591.

Blanquet, S., Marol-Bonin, S., Beyssac, E., Pompon, D., Renaud, M. and Alric, M. (2001). The ‘biodrug’ concept: an innovative approach to therapy. Trends Biotechn. 19 (10): 393-400.

Bloomer, J.C., Ambery, C., Miller, B.E., Connolly, P., Garden, H., Henley, N., Hodnett, N., Keel, S., Kreindler, J.L., Lloyd, R.S., Matthews, W., Yonchuk, J., Lazaar, A.I. (2017). Identification and characterisation of a salt form of Danirixin with reduced pharmacokinetic variability in patient populations. Eur. J. Pharmaceut. Biopharmaceut. 117: 224-231.

Brito-de la Fuente, E., Secouard, S., Siegert, N., Perelló, F. P., & Gallegos, C. (2019). Determination of Dissolution Profile and Bioaccessibility of Ketosteril Using an Advanced Gastrointestinal In Vitro Model.

Brouwers, J., Anneveld, B., Goudappel, G.J, Duchateau, G., Annaert, P., Augustijns, P. and Zeijdner, E. (2011) Food-dependent disintegration of immediate release fosamprenavir tablets: In vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system. Eur. J. Pharmaceutics Biopharmaceutics, 77: 313–319.

Butler, J., Hens, B., Vertzoni, M., Brouwers, J., Berben, P., Dressman, J., Andreas, C., Schaefer, K., Mann, J., McAllister, M., Jamei, M., Kostewicz, E., Kesisoglou, E., Langguth, P., Minekus, M., Müllertz, A., Schilderink, R., Koziolek, M., Jedamzik, P., Weitschies, W., Reppas C., Augustijns, P. (2019). In vitro models for the prediction of in vivo performance of oral dosage forms: Recent progress from partnership through the IMI OrBiTo collaboration. European Journal of Pharmaceutics and Biopharmaceutics, 136, 70-83

Chen, L., Hebrard, G., Beyssac, E., Denis, S. and Subirade, M. (2010). In vitro study of the release properties of soy-zein protein microspheres with a dynamic artificial digestive system. J. Agricultural Food Chem. 58: 9861–9867.

Chiang, P. C., Liu, J., Nagapudi, K., Wu, R., Dolton, M. J., Salehi, N., & Amidon, G. (2022). Evaluating the IVIVC by Combining Tiny-tim Outputs and Compartmental PK Model to Predict Oral Exposure for Different Formulations of Ibuprofen. Journal of Pharmaceutical Sciences.

Culen, M., Rezacova, A., Jampilek, J., Dohnal, J. (2013).Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small Intestine. J. Pharmaceutical Sci. 102 (9): 2995-3017. doi: 10.1002/jps.23494.

David, S.E., Strozyk, M.M. & Naylor, T.A. (2010). Using TNO gastro-Intestinal Model (TIM-1) to screen potential formulations for a poorly soluble development compound. J. Pharm. Pharmacol. 62: 1236-1237.

De Almeida, M.R.A., Bassani, A.S., Hamid, S., Banov, D., Phan, H. (2015). Investigation of the bioaccessibility of progesterone (micronized and non-micronized), using an in vitro model of the human gastrointestinal system. Intern. J. Appl. Sci. Techn. 5 (4): 1-7.

Dickinson, P.A., Abu Rmaileh, R., Ashworth, L., Barker, R.A., Burke, W.M., Patterson, C.M., Stainforth, N. and Yasin, M. (2012). An investigation into the utility of a multi-compartmental, dynamic, system of the upper gastrointestinal tract to support formulation development and establish bioequivalence of poorly soluble drugs. AAPS Journal 14 (2): 196-205.

Effinger, A., McAllister, M., Tomaszewska, I., O’Driscoll, C. M., Taylor, M., Gomersall, S., … & Fotaki, N. (2021). Investigating the Impact of Crohn’s Disease on the Bioaccessibility of a Lipid-Based Formulation with an In Vitro Dynamic Gastrointestinal Model. Molecular Pharmaceutics, 18(4), 1530-1543.

Garbacz, G., Klein, S. (2012). Dissolution testing of oral modified-release dosage forms. J. Pharmacy Pharmacology 64: 944-958.

Gittings, S., Turnbull, N., Roberts, C.J., Gershkovich, P. (2014). Dissolution methodology for taste masked oral dosage forms. J. Controlled Release 173: 32-42.

Havenaar, R., Anneveld, B., Hanff, L.M., de Wildt, S.N., de Koning, B.A.E., Mooij, M.G., Lelieveld, J.P.A., Minekus, M. (2013). In vitro gastrointestinal model (TIM) with predictive power, even for infants and children? Internat. J. Pharm. Internat. J. Pharm. 457: 327-332.

Hens, B., Brouwers, J., Anneveld, B., Corsetti, M., Symillides, M., Vertzoni, M., Reppas, C., Turner, D.B., Augustijns, P. (2014). Gastrointestinal transfer: In vivo evaluation and implementation in in vitro and in silico predictive tools. Eur. J. Pharmaceut. Sci. 63: 233-242.

Hopgood, M., Reynolds, G., & Barker, R. (2018). Using Computational Fluid Dynamics to Compare Shear Rate and Turbulence in the TIM-Automated Gastric Compartment With USP Apparatus II. Journal of pharmaceutical sciences.

Kostewicz ES, Abrahamsson B, Brewster M, Brouwers, J., Butler, J., Carlert, S., Dickinson, P.A., Dressman, J., Holm, R., Klein, S., Mann, J., McAllister, M., Minekus, M., Muenster, U., Müllertz, A., Verwei, M., Vertzoni, M., Weitschies, W., Augustijns, P. (2014). In vitro models for the prediction of in vivo performance of oral dosage forms. Eur. J. Pharm. Sci. 57 (1): 342-366.

Koziolek, M., Garbacz, G., Neumann, M., Weitschies, W. (2013). Simulating the postprandial stomach: Biorelevant test methods for the estimation of intragastric drug dissolution. Mol. Pharmaceutics 10: 2211-2221.

Kubbinga, M., Augustijns, P., García, M. A., Heinen, C., Wortelboer, H. M., Verwei, M., & Langguth, P. (2019). The effect of chitosan on the bioaccessibility and intestinal permeability of acyclovir. European Journal of Pharmaceutics and Biopharmaceutics, 136, 147-155.

Lyng, E., Havenaar, R., Shastri, P., Hetsco, L., Vick, A., Sagartz, J. (2016). Increased bioavailability of celecoxib under fed versus fasted conditions is determined by post-prandial bile secretion as demonstrated in a dynamic gastrointestinal model. J. Drug Dev. Ind. Pharm. 42 b(8): 1334-1339.

Mármol, Á. L., Fischer, P. L., Wahl, A., Schwöbel, D., Lenz, V., Sauer, K., & Koziolek, M. (2022). Application of tiny-TIM as a mechanistic tool to investigate the in vitro performance of different itraconazole formulations under physiologically relevant conditions. European Journal of Pharmaceutical Sciences, 106165.

McAllister, M. (2010). Dynamic Dissolution: A Step Closer to Predictive Dissolution Testing? Molecular Pharmaceutics 7 (5): 1374-1387.

Naylor, T.A., Connolly, P.C., Martini, L.G., Elder, D.P., Minekus, M., Havenaar, R. and Zeijdner, E. (2006). Use of a gastro-intestinal model and GastroplusTM for the prediction of in vivo performance. Industrial Pharmacy, Issue 12: 9-12. (also published in: Applied Therapeutic Research 6 (1): 15-19.

Ojala, K., Schilderink, R., Nykänen, P., van Veen, B., Malmström, C., Juppo, A., & Korjamo, T. (2020). Predicting the effect of prandial stage and particle size on absorption of ODM-204. European Journal of Pharmaceutics and Biopharmaceutics.

Pentafragka, C., Tomaszewska, I., Bellmann, S., Minekus, M., Schilderink, R., Vertzoni, M., … & Reppas, C. (2022). In Vitro Simulation of the Environment in the Upper Gastrointestinal Lumen After Drug Administration in the Fed State Using the TIM-1 System and Comparison With Luminal Data in Adults. Journal of Pharmaceutical Sciences, 111(1), 197-205.

Rogers, M.A., Yan, Y.-F., Ben-Elazar, K., Lan, Y., Faig, J., Smith, K., Uhrich, K.E. (2014). Salicylic Acid (SA) Bioaccessibility from SA-Based Poly(anhydrideester). Biomacromolecules 15: 3406−3411.

Salmon, F., Verwei, M., Havenaar, R. (2008). When oral bioavailability becomes a problem. Eur. Biopharm. Rev.: 78-83.

Schilderink, R., Protopappa, M., Fleth-James, J., Vertzoni, M., Schaefer, K., Havenaar, R., Kulla, I., Metzger, M., Reppas, C. (2020). On the usefulness of compendial setups and tiny-TIM system in evaluating the in vivo performance of oral drug products with various release profiles in the fasted state: Case example sodium salt of A6197. European Journal of Pharmaceutics and Biopharmaceutics.

Souliman, S., Beyssac, E., Cardot, J-M., Denis, S. and Alric, M. (2007). Investigation of the biopharmaceutical behavior of theophylline hydrophilic matrix tablets using USP methods and an artificial digestive system. Drug Development & Industrial Pharm. 33 (4): 475-483.

Souliman, S., Blanquet, S., Beysac, E. and Cardot,J-M. (2006). A level A in vitro/in vivo correlation in fasted and fed states using different methods: Applied to solid immediate release oral dosage from. Eur. J. Pharmaceutical Sci. 27: 72-79.

Tenjarla S, Romasanta V, Zeijdner E, Villa R, Moro L. (2007). Release of 5-aminosalicylate from an MMX mesalamine tablet during transit through a simulated gastrointestinal tract system. Adv Ther. 24 (4): 826-840.

Ting, Y., Jiang, Y., Lan, Y., Lin, Z., Rogers, M.A., Huang, Q. (2015). Viscoelastic emulsion improved the bioaccessibility and oral bioavailability of crystalline compound: A mechanistic study using in vitro and in vivo models. Mol. Pharmaceutics 12 (7): 2229-2236.

Van Den Abeele, J., Kostantini, C., Barker, R., Kourentas, A., Mann, J. C., Vertzoni, M., Beato, S., Reppas, C., Tack, J., Augustijns, P. (2020). The effect of reduced gastric acid secretion on the gastrointestinal disposition of a ritonavir amorphous solid dispersion in fasted healthy volunteers: an in vivo-in vitro investigation. European Journal of Pharmaceutical Sciences, 105377.

Van Den Abeele, J., Schilderink, R., Schneider, F., Mols, R., Minekus, M., Weitschies, W., Brouwers, J.,  Tack, J., Augustijns, P. (2017). Gastrointestinal and systemic disposition of diclofenac under fasted and fed state conditions supporting the evaluation of in vitro predictive tools. Mol. Pharmaceutics. doi: 10.1021/acs.molpharmaceut.7b00253.

Verwei, M., Minekus, M., Zeijdner, E., Schilderink, R., Havenaar, R. (2016). Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (TIM-1 and tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. Int. J. Pharm. 498: 178-186.

Westerhout, J., van de Steeg, E., Grossouw, D., Zeijdner, E.E., Krul, C.A.M., Verwei, M., Wortelboer, H.M. (2014). A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur. J. Pharmac. Sci. 63: 167–177.

Zeijdner, E.E., Vlek, J. (2002). TIM: a versatile tool in studying paediatric pharmacokinetics. The Regulatory  Review  (The Journal of the British Institute of Regulatory Affairs) 5 (7):18-21.

Zeijdner, E.E. and Havenaar, R. (2000). The fate of orally administrated compounds during passage through the gastrointestinal tract simulated in a dynamic in vitro model (TIM). European Pharmaceutical Contractor, Febr. issue: 76-81.

4. Probiotics & Microbiology studies (see also micro-ecology TIM-2 studies)

Arroyo-López, F.N., Blanquet-Diot, S, Denis, S., Thévenot, J., Chalancon, S., Alric, M., Rodríguez-Gómez, F., Romero-Gil, V., Jiménez-Díaz, R., Garrido-Fernández, A. (2014). Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion. Frontiers Microbiol. p1-9. doi 10.3389/micb.2014.00540.

Bel-Rhlid, R., Pagé-Zoerkler, N., Fumeaux, R., Ho-Dac, T., Chuat, J-Y., Sauvageat, J.L., Raab, T. (2012). Hydrolysis of chicoric and caftaric acids with esterases and Lactobacillus johnsonii in vitro and in a gastrointestinal model. J. Agric. Food Chem. 60: 9236-9241.

Bel-Rhlid, R., Crespy, V., Pagé-Zoerkler, N., Nagy, K., Raab, T. and Hansen, C-E. (2009). Hydrolysis of rosmaric acid from Rosemary extract with esterases and Lactobacillus johnsonii in vitro and in a gastrointestinal model. J. Agric. Food Chem. 57: 7700-7705.

Blanquet-Diot. S., Denis, S., Chalancon, S., Chaira, F., Cardot, J.-M., Alric, M. (2012). Use of artificial digestive systems to investigate the biopharmaceutical factors influencing the survival of probiotic yeast during gastrointestinal transit in humans. Pharm. Research 29: 1444–1453.

Cordonnier, C., Thévenot, J., Etienne-Mesmin, L., Denis, S., Alric, M., Livrelli, V., Blanquet-Diot, S. (2015). Dynamic in vitro models of the human gastrointestinal tract as relevant tools to assess the survival of probiotic strains and their interactions with gut microbiota. Microorganisms 3: 725-745.

Etienne-Mesmin, L., Livrelli, V., Privat, M., Denis,S., Cardot, J.M., Alric, M., Blanquet-Diot, S. (2011). Effect of a new probiotic Saccharomyces cerevisiae strain on survival of Escherichia coli O157:H7 in a dynamic gastrointestinal model. Applied and Environmental Microbiology 77: 1127-1131.

Fernandez, B., Hammami, R., Savard, P., Jean, J., Fliss, I. (2013). Pediococcus acidilactici UL5 and Lactococcus lactis ATCC 11454 are able to survive and express their bacteriocin genes under simulated gastrointestinal conditions. J. Appl. Microbiol. 116: 677-688.

Fujii, A., Crédoz, Y., Maathuis, A.J.H., Nishida, S. (2015). Different viability of probiotic strains accesible in Japanese dairy market demonstrated by in vitro methods. Milk Sci. 64 (2): 99-106.

Gagnon, M., Savard, P., Rivière, A., LaPointe, G., Roy, D. (2014). Bioaccessible antioxidants in milk fermented by Bifidobacterium longum subsp. longum strains. BioMed Res. Internat., ID 169381.

Gänzle, M.G., Hertel, C., Van der Vossen, J.M.B.M. and Hammes, W.P. (1999). Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine. Int. J. Food Microbiology 48: 21-35.

Hanchi, H., Hammami, R., Kourda, R., Ben Hamida, J., Fliss, I. (2014). Bacteriocinogenic properties and in vitro probiotic potential of enterococci from Tunisian dairy products. Arch. Micriobiol. 196: 331-344.

Hatanaka, M., Nakamura, Y., Maathuis, A.J.H., Venema, K., Murota, I., Yamamoto, Y. (2012). Influence of Bacillus subtilis C-3102 on microbiota in a dynamic in vitro model of the gastrointestinal tract simulating human conditions. Beneficial Microbes 3 (3): 229-236.

Havenaar, R. (1999). The model selection tool.  Dairy Industries International, 64 (6): 33-36.

Jedidi, H., Champagne, C.P., Raymond, Y., Farnworth, E., van Calsteren, M-R., Chouinard, P.Y., Fliss, I., (2014). Effect of milk enriched with conjugated linoleic acid and digested in a simulator (TIM-1) on the viability of probiotic bacteria. Internat. Dairy J. 37: 20-25.

Keller, D., Van Dinter, R., Cash, H., Farmer, S., Venema, K. (2017). Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1). Beneficial Microbes 8 (3): 491-496.

Keller, D., Verbruggen, S., Cash, H., Farmer, S., & Venema, K. (2019). Spores of Bacillus coagulans GBI-30, 6086 show high germination, survival and enzyme activity in a dynamic, computer-controlled in vitro model of the gastrointestinal tract. Beneficial microbes, 10(1), 77-87.

Khalf, M., Dabour, N., Kheadr, E. and Fliss, I. (2010). Viability of probiotic bacteria in maple sap products under storage and gastrointestinal conditions. Bioresource Technology 101: 7966–7972.

Kheadr, E., Zihler, A., Dabour, N., Lacroix, C., Le Blay, G. and Fliss, I. (2010). Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model.  J. Appl. Microbiol. 109: 54-64.

Kheadr, E.E., Dabour, N., Petit, G., Vuillemard, J-C. (2011). Probiotic-delivering capacity of dairy products: In vitro assessment using a gastro-intestinal dynamic model. Internat. J. Probiotics Prebiotics 6 (2): 73-80.

Larsen, N., de Souza, C. B., Krych, L., Kot, W., Leser, T. D., Sørensen, O. B., … & Jespersen, L. (2019). Effect of potato fiber on survival of Lactobacillus species at simulated gastric conditions and composition of the gut microbiota in vitro. Food Research International, 108644.

Maathuis, A., Keller, D. and Farmer, S. (2010). Survival and metabolitic activity of the GanedenBC30 strain of Bacillus coagulans in a dynamic in vitro model of the stomach and small intestine. Beneficial Microbes 1 (1): 31-36.

Makivuokko, H., Wacklin, P., Koenen, ME., Laamanen, K., Alakulppi, N., Venema, K. and Matto, J. 2012. Isolation of bifidobacteria for blood group secretor status targeted personalised nutrition. Microbial Ecology in Health & Disease 23: 28-34.

Marteau, P., Minekus, M., Havenaar, R. and Huis in ‘t Veld, J.H.J. (1997). Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: Validation and the effects of bile.  J. Dairy Sci. 80: 1031-1037.

Martinez, R.C.R., Aynaou, A-E., Albrecht, S., Schols, H.A., De Martinis, E.C.P., Zoetendal., E.G., Venema, K., Saad, S.M.I., Smidt, H. (2011). In vitro evaluation of gastrointestinal survival of Lactobacillus amylovorus DSM 16698 alone and in combination with galactooligosaccharides, milk and/or Bifidobacterium animalis subsp. lactis bb-12. Internat. J. Food Microbiol. 149: 152-158.

Miettinen, M., Alander, M., von Wright, A., Vuopio-Varkila, J., Marteau, P., Huis in‘t Veld, J. and Mattila-Sandholm, T. (1998). The survival of and cytokine induction by lactic acid bacteria after passage through a gastrointestinal model. Microbial Ecology Health Disease 10: 141-147.

Miszczycha, S.D., Thévenot, J., Denis, S., Callon, C., Livrelli, V., Alric, M., Montel, M-C., Blanquet-Diot, S., Thevenot-Sergentet, D. (2014). Survival of Escherichia coli O26:H11 exceeds that of Escherichia coli O157:H7 as assessed by simulated human digestion of contaminated raw milk cheeses. Internat. J. Food Microbiol. 172: 40-48.

Roussel, C., Cordonnier, C., Galia, W., Le Goff, O., Thévenot, J., Chalancon, S., Alric, M., Thevenot-Sergentet, D., Leriche, F., Van de Wiele, T., Livrelli, V., Blanquet-Diot, S. (2016) Increased EHEC survival and virulence gene expression indicate an enhanced pathogenicity upon simulated pediatric gastrointestinal conditions. Pediatric Res. 80 (5): 734-743.

Sáyago-Ayerdi, S. G., Venema, K., Tabernero, M., Sarriá, B., Bravo, L., & Mateos, R. (2021). Bioconversion of polyphenols and organic acids by gut microbiota of predigested Hibiscus sabdariffa L. calyces and Agave (A. tequilana Weber) fructans assessed in a dynamic in vitro model (TIM-2) of the human colon. Food Research International, 143, 110301.

Samtlebe, M., Denis, S., Chalancon S., Atamer Z., Wagner N., Neve H., Franz, C., Schmidt, H., Blanquet-Diot, S., Hinrichs, J. (2018). Bacteriophages as modulator for the human gut microbiota: Release from dairy food systems and survival in a dynamic human gastrointestinal model. Food Sci. Techn. 91: 235-241.

Sost, M. M., Ahles, S., Verhoeven, J., Verbruggen, S., Stevens, Y., & Venema, K. (2021). A Citrus Fruit Extract High in Polyphenols Beneficially Modulates the Gut Microbiota of Healthy Human Volunteers in a Validated In Vitro Model of the Colon. Nutrients, 13(11), 3915.

Stolaki, M., Minekus, M., Venema, K., Lahti, L., Smid, E. J., Kleerebezem, M., & Zoetendal, E. G. (2019). Microbial communities in a dynamic in vitro model for the human ileum resemble the human ileal microbiota. FEMS microbiology ecology, 95(8), fiz096.

Uriot, O., Galia, W., Ablavi Awussi, A., Perrin, C., Denis, S., Chalancon, S., Lorson, E., Poirson, C., Junjua, M., Le Roux, Y., Alric, M., Dary, A., Blanquet-Diot, S., Roussel, Y. (2016). Use of dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Food Microbiology 53: 18-29.

Vieira, A. D. S., de Souza, C. B., Padilha, M., Zoetendal, E. G., Smidt, H., Saad, S. M. I., & Venema, K. (2021). Impact of a fermented soy beverage supplemented with acerola by-product on the gut microbiota from lean and obese subjects using an in vitro model of the human colon. Applied microbiology and biotechnology, 105(9), 3771-3785.

Venema, K., Verhoeven, J., Beckman, C., & Keller, D. (2020). Survival of a probiotic-containing product using capsule-within-capsule technology in an in vitro model of the stomach and small intestine (TIM-1). Beneficial microbes, 11(4), 403-409.

Venema, K., Verhoeven, J., Verbruggen, S., Espinosa, L., & Courau, S. (2019). Probiotic survival during a multilayered tablet development as tested in a dynamic, computer‐controlled in vitro model of the stomach and small intestine (TIM‐1). Letters in applied microbiology.

Williams, G. A., Koenen, M. E., Havenaar, R., Wheeler, P., Gowtage, S., Lesellier, S., & Chambers, M. A. (2019). Survival of Mycobacterium bovis BCG oral vaccine during transit through a dynamic in vitro model simulating the upper gastrointestinal tract of badgers. PloS one, 14(4), e0214859.

Zhu, Y., Havenaar, R. and Venema, K. (2011) Response to: Pitino et al. (2010). Food Microbiology 27:1121-1127 “Survival of Lactobacillus rhamnosus strains in the upper gastrointestinal tract”. Food Microbiology, 28:1110.

5. Other nutrition studies


Björck, I.,  Ostman, E., Kristensen, M., Mateo Anson, N., Price, R., Haenen, G., Havenaar, R., Bach Knudsen, K-E., Frid, A., Mykkanen, H., Welch, R., and Riccardi, G. (2012). Cereal grains for nutrition and health benefits: Overview of results from in vitro, animal and human studies in the HEALTHGRAIN Project. Trends in Food Science & Technology 25 (2): 87-100.

Helou, C., Denis, S., Spatz, M., Marier, D., Rame, V., Alric, M., Tessier, F.J., Gadonna-Widehem, P. (2015).  Insights into bread melanoidins: Fate in the upper digestive tract and impact on the gut microbiota using in vitro systems. Food Func. 6 (12): 3737-3745.

Nguyen, T.T.P., Bhandari, B., Cichero, J., Prakash, S. (2015). A comprehensive review on in vitro digestion of infant formula. Food Res. Internat.

Bellmann, S., Krishnan, S., de Graaf, A., de Ligt, R. A., Pasman, W. J., Minekus, M., & Havenaar, R. (2019). Appetite ratings of foods are predictable with an in vitro advanced gastrointestinal model in combination with an in silico artificial neural network. Food Research International.